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Lee Derivatives

Rate of change of a smooth function w.r.t. a tangent vector.

Let M be a smooth manifold, xǫM a point of M, and V ǫTxM a tangent
vector to M at x .

Let f : M → R be a smooth function.

We want to measure the rate of change of f at x with respect to V .
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Here are two sensible ways to do this:

(1) Let α : R → M be a smooth function such that

α(0) = x and α′(0) = V .

Then the real number (f ◦ α)′(0) measures this rate of change.

(2) Consider the differential of f at x ,

dfx = (f∗)x : TxM → Tf (x)R
∼= R.

Then the real number dfx(V (x)) also measures this rate of change.
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Problem 1. (a) Check that these two definitions coincide.

(b) Suppose that (x1, x2, ..., xn) are local coordinates in a neighborhood of
the point xǫM, and that the tangent vector V at x is given in these
coordinates by

V = v1 ∂

∂x1
+ ... + vn ∂

∂xn
.

Show that the rate of change of f at x with respect to V is given by

Σiv
i(

∂f

∂x i
(x)).
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Now suppose that we still have the smooth function f : M → R, but that
instead of a tangent vector to M at a single point, we have a smooth
vector field V on M.

Let {φt} be the corresponding local one-parameter group of
diffeomorphisms of M generated by the vector field V . For brevity, we’ll
call {φt} a local flow.

Then the rate of change of f at the point xǫM is also given by the formula

dfx(V (x)) = limt→0
(f (φt(x)) − f (x))

t
.
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If we regard this rate of change dfx(V (x)) as a function of x , then its
expression Σiv

i (x)( ∂f
∂x i )(x) in local coordinates shows that it is a smooth

function of x , which for brevity we write as Vf .

Note that V is serving here as a differential operator, taking functions to
functions.

When we want to emphasize this operator character of V even further, we
write the operator as LV and call it the Lie derivative with respect to V .
Thus

LV (f ) =defn Vf .
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The Lie derivative of one vector field with respect to another.

We continue to work in the smooth manifold M, but this time with two
smooth vector fields V and W .

We want to measure the rate of change of W with respect to V .

Again let {φt} be the local flow generated by V .

We define the Lie derivative of W with respect to V at the point xǫM to
be the vector

(LV W )(x) = limt→0
(φ−t)∗W φt(x) − Wx

t
.

lying in the tangent space TxM.
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Comments. (1) It’s not clear yet that this limit exists.

(2) Note that (φ−t)∗W φt(x) = ((φ−t)∗W )x .

(3) Note that Wφt
(x) and Wx lie in tangent spaces to M at different

points, and so can not be subtracted from one another without first
moving one of these vectors to the tangent space containing the other.
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Problem 2. (a) Show that

Lv (W1 + W2) = Lv (W1) + Lv (W2).

(b) Show that

Lv (fW ) = (LV f )W + f (LV W ) = (Vf )W + f (LV W ).

Hint: Remember that the Leibniz Rule in Freshman Calculus was proved
by adding and subtracting a convenient middle term.
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Theorem

Suppose that in local coordinates (x1, ..., xn), the smooth vector fields V

and W are given by

V = Σiv
i(x1, ..., xn)

∂

∂x i

and

W = Σiw
i(x1, ..., xn)

∂

∂x i
.

Then LV W exists and in these local coordinates is given by

LV W = Σj(Σi(v
i ∂w j

∂x i
− w i ∂v j

∂x i
))

∂

∂x j

= (v i ∂w j

∂x i
− w i ∂v j

∂x i
)

∂

∂x j
,

using the Einstein convention of summing over repeated indices.
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Some preliminaries before giving the proof.

The simplest case. Suppose we are on the line R
1, that V = ∂

∂x
and that

W = w(x) ∂
∂x

. Then the flow {ϕt} of V is given by ϕt(x) = x + t. Hence

(LV W )(x) = limt→0
(ϕ−t)∗W (ϕt(x)) − W (x)

t

= limt→0
w(x + t) ∂

∂x
− w(x) ∂

∂x

t

=
dw

dx

∂

∂x
,

which agrees with the proposed formula.
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Lemma 1 Suppose we are in R
n, that V = ∂

∂x1 and that W = w j ∂
∂x j (we

continue to use the summation convention). Compute, as above, that

LV W = (
∂w j

∂x1
)

∂

∂x j
,

which again agrees with the proposed formula.

Lemma 2 Let V be a smooth vector field on the smooth manifold M, and
let x be a point of M at which V (x) 6= 0. Show how to find local
coordinates (x1, x2, ..., xn) about x , in terms of which V = ∂

∂x1 .
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Lemma 3 Let V = v i ∂
∂x i be a smooth vector field given in local

coordinates x1, ..., xn. Suppose that h is a diffeomorphism carrying this
coordinate neighborhood to an open set on which we have local
coordinates y1, ..., yn. Show that h∗V is given by

h∗V = (v i ∂y j

∂x i
)

∂

∂y j
,

where (∂y j

∂x i ) is the Jacobian matrix for h∗.

Note that this same formula applies for transforming a vector field V given
in one set of local coordinates to the same vector field given in a different
set of local coordinates.

Ryan Blair (U Penn) Math 600 Day 9: Lee Derivatives Thursday October 7, 2010 14 / 17



Lee Derivatives

Consistency check on the proposed formula

LV W = (v i ∂w j

∂x i
− w i ∂v j

∂x i
)

∂

∂x j
.

Suppose we use the result of Lemma 3 to transform the vector fields V

and W from one set (x1, ..., xn) of local coordinates to another set
(y1, ..., yn). We must check that the proposed formula for LV W

transforms in the same way, for otherwise it could not possibly be correct.

We will write V = v i ∂
∂x i in the first set of coordinates, and V = v r ∂

∂y r in

the second set, where v r = v i ∂y r

∂x i , and likewise for W .
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We now write the formula for LV W in the y-coordinates, transform the
appearances of V and W in that formula back to x-coordinates, and see
(thanks to some convenient cancellations) that the result is the
appropriate transform of LV W :

LV W = (v r w s

∂y r
− w r ∂v s

∂y r
)

∂

∂y s

= (v i ∂y r

∂x i

∂

∂y r
(w j ∂y s

∂x j
) − w j ∂y r

∂x j

∂

∂y r
(v i ∂y s

∂x i
))

∂

∂y s
.

This expands from two to four terms, and then the second derivative
terms cancel, thanks to compressions such as (∂y r

∂x i )(
∂xk

∂y r ) = δk
i ; the first

derivative terms compress to

(v i w j

∂x i
− w i ∂v j

∂x i
)

∂

∂y s
,

which is the transform of LV W from x- to y-coordinates.
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Proof of the Theorem. We must show that

LV W = (v i ∂w j

∂x i
− w i ∂v j

∂x i
)

∂

∂x j
.

To show this in a neighborhood of the point x , suppose first that
V (x) 6= 0. Then by Lemma 2, we can choose local coordinates about x in
terms of which V = ∂

∂x1 , in which case the proposed formula is correct
according to Lemma 1. By our previous consistency check, if the formula
is correct in one coordinate system about x , it is correct in all coordinate
systems about x .

Now, by continuity, the formula is correct in a neighborhood of x if x is in
the closure of the set of points where V is nonzero.

All that remains is an open set of points where V ≡ 0, where by inspection
the formula is correct. This completes the proof.
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